TSTP Solution File: MSC021^5 by cocATP---0.2.0

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : cocATP---0.2.0
% Problem  : MSC021^5 : TPTP v6.1.0. Released v4.0.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p

% Computer : n102.star.cs.uiowa.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2609 0 2.40GHz
% Memory   : 32286.75MB
% OS       : Linux 2.6.32-431.20.3.el6.x86_64
% CPULimit : 300s
% DateTime : Thu Jul 17 13:26:42 EDT 2014

% Result   : Unknown 36.27s
% Output   : None 
% Verified : 
% SZS Type : None (Parsing solution fails)
% Syntax   : Number of formulae    : 0

% Comments : 
%------------------------------------------------------------------------------
%----NO SOLUTION OUTPUT BY SYSTEM
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% % Problem  : MSC021^5 : TPTP v6.1.0. Released v4.0.0.
% % Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p
% % Computer : n102.star.cs.uiowa.edu
% % Model    : x86_64 x86_64
% % CPU      : Intel(R) Xeon(R) CPU E5-2609 0 @ 2.40GHz
% % Memory   : 32286.75MB
% % OS       : Linux 2.6.32-431.20.3.el6.x86_64
% % CPULimit : 300
% % DateTime : Thu Jul 17 07:37:16 CDT 2014
% % CPUTime  : 36.27 
% Python 2.7.5
% Using paths ['/home/cristobal/cocATP/CASC/TPTP/', '/export/starexec/sandbox/benchmark/', '/export/starexec/sandbox/benchmark/']
% FOF formula (<kernel.Constant object at 0x1d4cb48>, <kernel.DependentProduct object at 0x1d31fc8>) of role type named cS
% Using role type
% Declaring cS:(fofType->fofType)
% FOF formula (<kernel.Constant object at 0x21863f8>, <kernel.DependentProduct object at 0x1d31d40>) of role type named cDOUBLE
% Using role type
% Declaring cDOUBLE:(fofType->(fofType->Prop))
% FOF formula (<kernel.Constant object at 0x1d4cb48>, <kernel.DependentProduct object at 0x1d31dd0>) of role type named cHALF
% Using role type
% Declaring cHALF:(fofType->(fofType->Prop))
% FOF formula (<kernel.Constant object at 0x1d4cb48>, <kernel.Single object at 0x1d31ea8>) of role type named c0
% Using role type
% Declaring c0:fofType
% FOF formula (((and ((and ((cDOUBLE c0) c0)) (forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy))))))) (forall (Q:(fofType->(fofType->Prop))) (Xu:fofType) (Xv:fofType), (((and ((and ((and ((cHALF Xu) Xv)) ((Q c0) c0))) ((Q (cS c0)) c0))) (forall (Xx:fofType) (Xy:fofType), (((Q Xx) Xy)->((Q (cS (cS Xx))) (cS Xy)))))->((Q Xu) Xv))))->(forall (Xu:fofType) (Xv:fofType), (((cHALF Xu) Xv)->((or ((cDOUBLE Xv) Xu)) ((cDOUBLE (cS Xv)) (cS Xu)))))) of role conjecture named cTHM300
% Conjecture to prove = (((and ((and ((cDOUBLE c0) c0)) (forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy))))))) (forall (Q:(fofType->(fofType->Prop))) (Xu:fofType) (Xv:fofType), (((and ((and ((and ((cHALF Xu) Xv)) ((Q c0) c0))) ((Q (cS c0)) c0))) (forall (Xx:fofType) (Xy:fofType), (((Q Xx) Xy)->((Q (cS (cS Xx))) (cS Xy)))))->((Q Xu) Xv))))->(forall (Xu:fofType) (Xv:fofType), (((cHALF Xu) Xv)->((or ((cDOUBLE Xv) Xu)) ((cDOUBLE (cS Xv)) (cS Xu)))))):Prop
% We need to prove ['(((and ((and ((cDOUBLE c0) c0)) (forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy))))))) (forall (Q:(fofType->(fofType->Prop))) (Xu:fofType) (Xv:fofType), (((and ((and ((and ((cHALF Xu) Xv)) ((Q c0) c0))) ((Q (cS c0)) c0))) (forall (Xx:fofType) (Xy:fofType), (((Q Xx) Xy)->((Q (cS (cS Xx))) (cS Xy)))))->((Q Xu) Xv))))->(forall (Xu:fofType) (Xv:fofType), (((cHALF Xu) Xv)->((or ((cDOUBLE Xv) Xu)) ((cDOUBLE (cS Xv)) (cS Xu))))))']
% Parameter fofType:Type.
% Parameter cS:(fofType->fofType).
% Parameter cDOUBLE:(fofType->(fofType->Prop)).
% Parameter cHALF:(fofType->(fofType->Prop)).
% Parameter c0:fofType.
% Trying to prove (((and ((and ((cDOUBLE c0) c0)) (forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy))))))) (forall (Q:(fofType->(fofType->Prop))) (Xu:fofType) (Xv:fofType), (((and ((and ((and ((cHALF Xu) Xv)) ((Q c0) c0))) ((Q (cS c0)) c0))) (forall (Xx:fofType) (Xy:fofType), (((Q Xx) Xy)->((Q (cS (cS Xx))) (cS Xy)))))->((Q Xu) Xv))))->(forall (Xu:fofType) (Xv:fofType), (((cHALF Xu) Xv)->((or ((cDOUBLE Xv) Xu)) ((cDOUBLE (cS Xv)) (cS Xu))))))
% Found x3:((cDOUBLE c0) c0)
% Found x3 as proof of ((cDOUBLE c0) c0)
% Found x3:((cDOUBLE c0) c0)
% Found x3 as proof of ((cDOUBLE c0) c0)
% Found x3:((cDOUBLE c0) c0)
% Found x3 as proof of ((cDOUBLE c0) c0)
% Found x3:((cDOUBLE c0) c0)
% Found x3 as proof of ((cDOUBLE c0) c0)
% Found x3:((cDOUBLE c0) c0)
% Found x3 as proof of ((cDOUBLE c0) c0)
% Found x3:((cDOUBLE c0) c0)
% Found x3 as proof of ((cDOUBLE c0) c0)
% Found x3:((cDOUBLE c0) c0)
% Found x3 as proof of ((cDOUBLE c0) c0)
% Found x3:((cDOUBLE c0) c0)
% Found x3 as proof of ((cDOUBLE c0) c0)
% Found x3:((cDOUBLE c0) c0)
% Found x3 as proof of ((cDOUBLE c0) c0)
% Found x3:((cDOUBLE c0) c0)
% Found x3 as proof of ((cDOUBLE c0) c0)
% Found x3:((cDOUBLE c0) c0)
% Found x3 as proof of ((cDOUBLE c0) c0)
% Found x3:((cDOUBLE c0) c0)
% Found x3 as proof of ((cDOUBLE c0) c0)
% Found x3:((cDOUBLE c0) c0)
% Found x3 as proof of ((cDOUBLE c0) c0)
% Found x3:((cDOUBLE c0) c0)
% Found x3 as proof of ((cDOUBLE c0) c0)
% Found x3:((cDOUBLE c0) c0)
% Found x3 as proof of ((cDOUBLE c0) c0)
% Found x3:((cDOUBLE c0) c0)
% Found x3 as proof of ((cDOUBLE c0) c0)
% Found x3:((cDOUBLE c0) c0)
% Found x3 as proof of ((cDOUBLE c0) c0)
% Found x3:((cDOUBLE c0) c0)
% Found x3 as proof of ((cDOUBLE c0) c0)
% Found x3:((cDOUBLE c0) c0)
% Found x3 as proof of ((cDOUBLE c0) c0)
% Found x3:((cDOUBLE c0) c0)
% Found x3 as proof of ((cDOUBLE c0) c0)
% Found x3:((cDOUBLE c0) c0)
% Found x3 as proof of ((cDOUBLE c0) c0)
% Found x3:((cDOUBLE c0) c0)
% Found x3 as proof of ((cDOUBLE c0) c0)
% Found x3:((cDOUBLE c0) c0)
% Found x3 as proof of ((cDOUBLE c0) c0)
% Found x3:((cDOUBLE c0) c0)
% Found x3 as proof of ((cDOUBLE c0) c0)
% Found x3:((cDOUBLE c0) c0)
% Found x3 as proof of ((cDOUBLE c0) c0)
% Found x3:((cDOUBLE c0) c0)
% Found x3 as proof of ((cDOUBLE c0) c0)
% Found x3:((cDOUBLE c0) c0)
% Found x3 as proof of ((cDOUBLE c0) c0)
% Found x3:((cDOUBLE c0) c0)
% Found x3 as proof of ((cDOUBLE c0) c0)
% Found x3:((cDOUBLE c0) c0)
% Found x3 as proof of ((cDOUBLE c0) c0)
% Found x3:((cDOUBLE c0) c0)
% Found x3 as proof of ((cDOUBLE c0) c0)
% Found x3:((cDOUBLE c0) c0)
% Found x3 as proof of ((cDOUBLE c0) c0)
% Found x3:((cDOUBLE c0) c0)
% Found x3 as proof of ((cDOUBLE c0) c0)
% Found x3:((cDOUBLE c0) c0)
% Found x3 as proof of ((cDOUBLE c0) c0)
% Found x3:((cDOUBLE c0) c0)
% Found x3 as proof of ((cDOUBLE c0) c0)
% Found x3:((cDOUBLE c0) c0)
% Found x3 as proof of ((cDOUBLE c0) c0)
% Found x3:((cDOUBLE c0) c0)
% Found x3 as proof of ((cDOUBLE c0) c0)
% Found x3:((cDOUBLE c0) c0)
% Found x3 as proof of ((cDOUBLE c0) c0)
% Found x3:((cDOUBLE c0) c0)
% Found x3 as proof of ((cDOUBLE c0) c0)
% Found x3:((cDOUBLE c0) c0)
% Found x3 as proof of ((cDOUBLE c0) c0)
% Found x3:((cDOUBLE c0) c0)
% Found x3 as proof of ((cDOUBLE c0) c0)
% Found x3:((cDOUBLE c0) c0)
% Found x3 as proof of ((cDOUBLE c0) c0)
% Found x3:((cDOUBLE c0) c0)
% Found x3 as proof of ((cDOUBLE c0) c0)
% Found x3:((cDOUBLE c0) c0)
% Found (fun (x4:(forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy))))))=> x3) as proof of ((cDOUBLE c0) c0)
% Found (fun (x3:((cDOUBLE c0) c0)) (x4:(forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy))))))=> x3) as proof of ((forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy)))))->((cDOUBLE c0) c0))
% Found (fun (x3:((cDOUBLE c0) c0)) (x4:(forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy))))))=> x3) as proof of (((cDOUBLE c0) c0)->((forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy)))))->((cDOUBLE c0) c0)))
% Found (and_rect10 (fun (x3:((cDOUBLE c0) c0)) (x4:(forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy))))))=> x3)) as proof of ((cDOUBLE c0) c0)
% Found ((and_rect1 ((cDOUBLE c0) c0)) (fun (x3:((cDOUBLE c0) c0)) (x4:(forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy))))))=> x3)) as proof of ((cDOUBLE c0) c0)
% Found (((fun (P:Type) (x3:(((cDOUBLE c0) c0)->((forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy)))))->P)))=> (((((and_rect ((cDOUBLE c0) c0)) (forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy)))))) P) x3) x1)) ((cDOUBLE c0) c0)) (fun (x3:((cDOUBLE c0) c0)) (x4:(forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy))))))=> x3)) as proof of ((cDOUBLE c0) c0)
% Found (((fun (P:Type) (x3:(((cDOUBLE c0) c0)->((forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy)))))->P)))=> (((((and_rect ((cDOUBLE c0) c0)) (forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy)))))) P) x3) x1)) ((cDOUBLE c0) c0)) (fun (x3:((cDOUBLE c0) c0)) (x4:(forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy))))))=> x3)) as proof of ((cDOUBLE c0) c0)
% Found x3:((cDOUBLE c0) c0)
% Found (fun (x4:(forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy))))))=> x3) as proof of ((cDOUBLE c0) c0)
% Found (fun (x3:((cDOUBLE c0) c0)) (x4:(forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy))))))=> x3) as proof of ((forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy)))))->((cDOUBLE c0) c0))
% Found (fun (x3:((cDOUBLE c0) c0)) (x4:(forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy))))))=> x3) as proof of (((cDOUBLE c0) c0)->((forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy)))))->((cDOUBLE c0) c0)))
% Found (and_rect10 (fun (x3:((cDOUBLE c0) c0)) (x4:(forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy))))))=> x3)) as proof of ((cDOUBLE c0) c0)
% Found ((and_rect1 ((cDOUBLE c0) c0)) (fun (x3:((cDOUBLE c0) c0)) (x4:(forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy))))))=> x3)) as proof of ((cDOUBLE c0) c0)
% Found (((fun (P:Type) (x3:(((cDOUBLE c0) c0)->((forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy)))))->P)))=> (((((and_rect ((cDOUBLE c0) c0)) (forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy)))))) P) x3) x1)) ((cDOUBLE c0) c0)) (fun (x3:((cDOUBLE c0) c0)) (x4:(forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy))))))=> x3)) as proof of ((cDOUBLE c0) c0)
% Found (((fun (P:Type) (x3:(((cDOUBLE c0) c0)->((forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy)))))->P)))=> (((((and_rect ((cDOUBLE c0) c0)) (forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy)))))) P) x3) x1)) ((cDOUBLE c0) c0)) (fun (x3:((cDOUBLE c0) c0)) (x4:(forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy))))))=> x3)) as proof of ((cDOUBLE c0) c0)
% Found x3:((cDOUBLE c0) c0)
% Found (fun (x4:(forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy))))))=> x3) as proof of ((cDOUBLE c0) c0)
% Found (fun (x3:((cDOUBLE c0) c0)) (x4:(forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy))))))=> x3) as proof of ((forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy)))))->((cDOUBLE c0) c0))
% Found (fun (x3:((cDOUBLE c0) c0)) (x4:(forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy))))))=> x3) as proof of (((cDOUBLE c0) c0)->((forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy)))))->((cDOUBLE c0) c0)))
% Found (and_rect10 (fun (x3:((cDOUBLE c0) c0)) (x4:(forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy))))))=> x3)) as proof of ((cDOUBLE c0) c0)
% Found ((and_rect1 ((cDOUBLE c0) c0)) (fun (x3:((cDOUBLE c0) c0)) (x4:(forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy))))))=> x3)) as proof of ((cDOUBLE c0) c0)
% Found (((fun (P:Type) (x3:(((cDOUBLE c0) c0)->((forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy)))))->P)))=> (((((and_rect ((cDOUBLE c0) c0)) (forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy)))))) P) x3) x1)) ((cDOUBLE c0) c0)) (fun (x3:((cDOUBLE c0) c0)) (x4:(forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy))))))=> x3)) as proof of ((cDOUBLE c0) c0)
% Found (((fun (P:Type) (x3:(((cDOUBLE c0) c0)->((forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy)))))->P)))=> (((((and_rect ((cDOUBLE c0) c0)) (forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy)))))) P) x3) x1)) ((cDOUBLE c0) c0)) (fun (x3:((cDOUBLE c0) c0)) (x4:(forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy))))))=> x3)) as proof of ((cDOUBLE c0) c0)
% Found x3:((cDOUBLE c0) c0)
% Found (fun (x4:(forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy))))))=> x3) as proof of ((cDOUBLE c0) c0)
% Found (fun (x3:((cDOUBLE c0) c0)) (x4:(forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy))))))=> x3) as proof of ((forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy)))))->((cDOUBLE c0) c0))
% Found (fun (x3:((cDOUBLE c0) c0)) (x4:(forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy))))))=> x3) as proof of (((cDOUBLE c0) c0)->((forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy)))))->((cDOUBLE c0) c0)))
% Found (and_rect10 (fun (x3:((cDOUBLE c0) c0)) (x4:(forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy))))))=> x3)) as proof of ((cDOUBLE c0) c0)
% Found ((and_rect1 ((cDOUBLE c0) c0)) (fun (x3:((cDOUBLE c0) c0)) (x4:(forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy))))))=> x3)) as proof of ((cDOUBLE c0) c0)
% Found (((fun (P:Type) (x3:(((cDOUBLE c0) c0)->((forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy)))))->P)))=> (((((and_rect ((cDOUBLE c0) c0)) (forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy)))))) P) x3) x1)) ((cDOUBLE c0) c0)) (fun (x3:((cDOUBLE c0) c0)) (x4:(forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy))))))=> x3)) as proof of ((cDOUBLE c0) c0)
% Found (((fun (P:Type) (x3:(((cDOUBLE c0) c0)->((forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy)))))->P)))=> (((((and_rect ((cDOUBLE c0) c0)) (forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy)))))) P) x3) x1)) ((cDOUBLE c0) c0)) (fun (x3:((cDOUBLE c0) c0)) (x4:(forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy))))))=> x3)) as proof of ((cDOUBLE c0) c0)
% Found x3:((cDOUBLE c0) c0)
% Found x3 as proof of ((cDOUBLE c0) c0)
% Found x3:((cDOUBLE c0) c0)
% Found x3 as proof of ((cDOUBLE c0) c0)
% Found x3:((cDOUBLE c0) c0)
% Found x3 as proof of ((cDOUBLE c0) c0)
% Found x3:((cDOUBLE c0) c0)
% Found x3 as proof of ((cDOUBLE c0) c0)
% Found x3:((cDOUBLE c0) c0)
% Found x3 as proof of ((cDOUBLE c0) c0)
% Found x3:((cDOUBLE c0) c0)
% Found x3 as proof of ((cDOUBLE c0) c0)
% Found x3:((cDOUBLE c0) c0)
% Found (fun (x4:(forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy))))))=> x3) as proof of ((cDOUBLE c0) c0)
% Found (fun (x3:((cDOUBLE c0) c0)) (x4:(forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy))))))=> x3) as proof of ((forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy)))))->((cDOUBLE c0) c0))
% Found (fun (x3:((cDOUBLE c0) c0)) (x4:(forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy))))))=> x3) as proof of (((cDOUBLE c0) c0)->((forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy)))))->((cDOUBLE c0) c0)))
% Found (and_rect10 (fun (x3:((cDOUBLE c0) c0)) (x4:(forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy))))))=> x3)) as proof of ((cDOUBLE c0) c0)
% Found ((and_rect1 ((cDOUBLE c0) c0)) (fun (x3:((cDOUBLE c0) c0)) (x4:(forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy))))))=> x3)) as proof of ((cDOUBLE c0) c0)
% Found (((fun (P:Type) (x3:(((cDOUBLE c0) c0)->((forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy)))))->P)))=> (((((and_rect ((cDOUBLE c0) c0)) (forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy)))))) P) x3) x1)) ((cDOUBLE c0) c0)) (fun (x3:((cDOUBLE c0) c0)) (x4:(forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy))))))=> x3)) as proof of ((cDOUBLE c0) c0)
% Found (((fun (P:Type) (x3:(((cDOUBLE c0) c0)->((forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy)))))->P)))=> (((((and_rect ((cDOUBLE c0) c0)) (forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy)))))) P) x3) x1)) ((cDOUBLE c0) c0)) (fun (x3:((cDOUBLE c0) c0)) (x4:(forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy))))))=> x3)) as proof of ((cDOUBLE c0) c0)
% Found x3:((cDOUBLE c0) c0)
% Found (fun (x4:(forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy))))))=> x3) as proof of ((cDOUBLE c0) c0)
% Found (fun (x3:((cDOUBLE c0) c0)) (x4:(forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy))))))=> x3) as proof of ((forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy)))))->((cDOUBLE c0) c0))
% Found (fun (x3:((cDOUBLE c0) c0)) (x4:(forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy))))))=> x3) as proof of (((cDOUBLE c0) c0)->((forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy)))))->((cDOUBLE c0) c0)))
% Found (and_rect10 (fun (x3:((cDOUBLE c0) c0)) (x4:(forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy))))))=> x3)) as proof of ((cDOUBLE c0) c0)
% Found ((and_rect1 ((cDOUBLE c0) c0)) (fun (x3:((cDOUBLE c0) c0)) (x4:(forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy))))))=> x3)) as proof of ((cDOUBLE c0) c0)
% Found (((fun (P:Type) (x3:(((cDOUBLE c0) c0)->((forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy)))))->P)))=> (((((and_rect ((cDOUBLE c0) c0)) (forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy)))))) P) x3) x1)) ((cDOUBLE c0) c0)) (fun (x3:((cDOUBLE c0) c0)) (x4:(forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy))))))=> x3)) as proof of ((cDOUBLE c0) c0)
% Found (((fun (P:Type) (x3:(((cDOUBLE c0) c0)->((forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy)))))->P)))=> (((((and_rect ((cDOUBLE c0) c0)) (forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy)))))) P) x3) x1)) ((cDOUBLE c0) c0)) (fun (x3:((cDOUBLE c0) c0)) (x4:(forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy))))))=> x3)) as proof of ((cDOUBLE c0) c0)
% Found x3:((cDOUBLE c0) c0)
% Found (fun (x4:(forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy))))))=> x3) as proof of ((cDOUBLE c0) c0)
% Found (fun (x3:((cDOUBLE c0) c0)) (x4:(forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy))))))=> x3) as proof of ((forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy)))))->((cDOUBLE c0) c0))
% Found (fun (x3:((cDOUBLE c0) c0)) (x4:(forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy))))))=> x3) as proof of (((cDOUBLE c0) c0)->((forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy)))))->((cDOUBLE c0) c0)))
% Found (and_rect10 (fun (x3:((cDOUBLE c0) c0)) (x4:(forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy))))))=> x3)) as proof of ((cDOUBLE c0) c0)
% Found ((and_rect1 ((cDOUBLE c0) c0)) (fun (x3:((cDOUBLE c0) c0)) (x4:(forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy))))))=> x3)) as proof of ((cDOUBLE c0) c0)
% Found (((fun (P:Type) (x3:(((cDOUBLE c0) c0)->((forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy)))))->P)))=> (((((and_rect ((cDOUBLE c0) c0)) (forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy)))))) P) x3) x1)) ((cDOUBLE c0) c0)) (fun (x3:((cDOUBLE c0) c0)) (x4:(forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy))))))=> x3)) as proof of ((cDOUBLE c0) c0)
% Found (((fun (P:Type) (x3:(((cDOUBLE c0) c0)->((forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy)))))->P)))=> (((((and_rect ((cDOUBLE c0) c0)) (forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy)))))) P) x3) x1)) ((cDOUBLE c0) c0)) (fun (x3:((cDOUBLE c0) c0)) (x4:(forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy))))))=> x3)) as proof of ((cDOUBLE c0) c0)
% Found x3:((cDOUBLE c0) c0)
% Found (fun (x4:(forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy))))))=> x3) as proof of ((cDOUBLE c0) c0)
% Found (fun (x3:((cDOUBLE c0) c0)) (x4:(forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy))))))=> x3) as proof of ((forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy)))))->((cDOUBLE c0) c0))
% Found (fun (x3:((cDOUBLE c0) c0)) (x4:(forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy))))))=> x3) as proof of (((cDOUBLE c0) c0)->((forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy)))))->((cDOUBLE c0) c0)))
% Found (and_rect10 (fun (x3:((cDOUBLE c0) c0)) (x4:(forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy))))))=> x3)) as proof of ((cDOUBLE c0) c0)
% Found ((and_rect1 ((cDOUBLE c0) c0)) (fun (x3:((cDOUBLE c0) c0)) (x4:(forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy))))))=> x3)) as proof of ((cDOUBLE c0) c0)
% Found (((fun (P:Type) (x3:(((cDOUBLE c0) c0)->((forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy)))))->P)))=> (((((and_rect ((cDOUBLE c0) c0)) (forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy)))))) P) x3) x1)) ((cDOUBLE c0) c0)) (fun (x3:((cDOUBLE c0) c0)) (x4:(forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy))))))=> x3)) as proof of ((cDOUBLE c0) c0)
% Found (((fun (P:Type) (x3:(((cDOUBLE c0) c0)->((forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy)))))->P)))=> (((((and_rect ((cDOUBLE c0) c0)) (forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy)))))) P) x3) x1)) ((cDOUBLE c0) c0)) (fun (x3:((cDOUBLE c0) c0)) (x4:(forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy))))))=> x3)) as proof of ((cDOUBLE c0) c0)
% Found x3:((cDOUBLE c0) c0)
% Found (fun (x4:(forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy))))))=> x3) as proof of ((cDOUBLE c0) c0)
% Found (fun (x3:((cDOUBLE c0) c0)) (x4:(forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy))))))=> x3) as proof of ((forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy)))))->((cDOUBLE c0) c0))
% Found (fun (x3:((cDOUBLE c0) c0)) (x4:(forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy))))))=> x3) as proof of (((cDOUBLE c0) c0)->((forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy)))))->((cDOUBLE c0) c0)))
% Found (and_rect10 (fun (x3:((cDOUBLE c0) c0)) (x4:(forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy))))))=> x3)) as proof of ((cDOUBLE c0) c0)
% Found ((and_rect1 ((cDOUBLE c0) c0)) (fun (x3:((cDOUBLE c0) c0)) (x4:(forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy))))))=> x3)) as proof of ((cDOUBLE c0) c0)
% Found (((fun (P:Type) (x3:(((cDOUBLE c0) c0)->((forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy)))))->P)))=> (((((and_rect ((cDOUBLE c0) c0)) (forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy)))))) P) x3) x1)) ((cDOUBLE c0) c0)) (fun (x3:((cDOUBLE c0) c0)) (x4:(forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy))))))=> x3)) as proof of ((cDOUBLE c0) c0)
% Found (((fun (P:Type) (x3:(((cDOUBLE c0) c0)->((forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy)))))->P)))=> (((((and_rect ((cDOUBLE c0) c0)) (forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy)))))) P) x3) x1)) ((cDOUBLE c0) c0)) (fun (x3:((cDOUBLE c0) c0)) (x4:(forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy))))))=> x3)) as proof of ((cDOUBLE c0) c0)
% Found x3:((cDOUBLE c0) c0)
% Found (fun (x4:(forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy))))))=> x3) as proof of ((cDOUBLE c0) c0)
% Found (fun (x3:((cDOUBLE c0) c0)) (x4:(forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy))))))=> x3) as proof of ((forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy)))))->((cDOUBLE c0) c0))
% Found (fun (x3:((cDOUBLE c0) c0)) (x4:(forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy))))))=> x3) as proof of (((cDOUBLE c0) c0)->((forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy)))))->((cDOUBLE c0) c0)))
% Found (and_rect10 (fun (x3:((cDOUBLE c0) c0)) (x4:(forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy))))))=> x3)) as proof of ((cDOUBLE c0) c0)
% Found ((and_rect1 ((cDOUBLE c0) c0)) (fun (x3:((cDOUBLE c0) c0)) (x4:(forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy))))))=> x3)) as proof of ((cDOUBLE c0) c0)
% Found (((fun (P:Type) (x3:(((cDOUBLE c0) c0)->((forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy)))))->P)))=> (((((and_rect ((cDOUBLE c0) c0)) (forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy)))))) P) x3) x1)) ((cDOUBLE c0) c0)) (fun (x3:((cDOUBLE c0) c0)) (x4:(forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy))))))=> x3)) as proof of ((cDOUBLE c0) c0)
% Found (((fun (P:Type) (x3:(((cDOUBLE c0) c0)->((forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy)))))->P)))=> (((((and_rect ((cDOUBLE c0) c0)) (forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy)))))) P) x3) x1)) ((cDOUBLE c0) c0)) (fun (x3:((cDOUBLE c0) c0)) (x4:(forall (Xx:fofType) (Xy:fofType), (((cDOUBLE Xx) Xy)->((cDOUBLE (cS Xx)) (cS (cS Xy))))))=> x3)) as proof of ((cDOUBLE c0) c0)
% % SZS status GaveUp for /export/starexec/sandbox/benchmark/theBenchmark.p
% EOF
%------------------------------------------------------------------------------